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Adipose tissue secretes a variety of factors in a manner

dependent upon its metabolic state. These factors are derived

from adipocyte or non-adipocyte fractions, and include

proteins, metabolites and hormones. Obesity is a major risk

factor for type 2 diabetes and cardiovascular disease, and

adipocyte-derived factors might contribute to or ameliorate

obesity-associated pathologies such as insulin resistance,

dyslipidemia, vascular dysfunction and a chronic inflammatory

and prothrombotic state.
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Introduction
Starting with the discovery of leptin as an adipocyte-

derived satiety factor, adipose tissue is increasingly being

recognized as an endocrine organ. A growing number of

adipocyte-derived factors have been described and their

contribution to the pathophysiology of the metabolic

syndrome, characterized by central adiposity, insulin

resistance, dyslipidemia, hypertension, chronic inflamma-

tion and a prothrombotic state, is being investigated.

Apart from fully differentiated adipocytes, adipose tissue

contains numerous other cell types, including fibroblasts,

preadipocytes, macrophages, endothelial cells and

smooth muscle cells. It is becoming increasingly clear

that several adipose-derived factors are not, or at least not

exclusively, produced by adipocytes; in addition, some

factors might primarily act by inducing secretion of other

factors within adipose tissue in an autocrine or paracrine

fashion. Different adipose depots are functionally dis-

tinct; visceral adipose tissue is of particular interest, as its

mass is most closely associated with the metabolic syn-

drome. Several excellent reviews on adipose-derived

factors have been published recently and will be referred

to [1–3]. This review focuses on recent advances in the
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physiology and pharmacology of adipose-derived factors

with particular emphasis on their therapeutic potential.

Leptin
Leptin, the 16 kDa product of the ob gene, signals

through central pathways to control satiety, energy

expenditure and neuroendocrine function. The mechan-

ism of leptin action in the hypothalamus and its effects on

satiety have been discussed elsewhere [1,4]. Leptin has

profound effects on lipid metabolism, which are mediated

through both central and peripheral pathways [1–3]. In

muscle, leptin stimulates fatty acid oxidation by activat-

ing 50-activated AMP kinase (AMPK) both directly and

through a central mechanism [5]. Leptin also partitions

lipids away from non-adipose tissue, thus averting lipo-

toxicity; this effect might be mediated by its ability to

repress stearoyl CoA desaturase through a central path-

way [6�]. In addition, leptin has been shown recently to

inhibit hepatic triglyceride accumulation directly by acti-

vating phosphatidylinositol-3-kinase [7]. Interestingly,

leptin has both deleterious and protective effects on

cardiovascular function [8]. Leptin-deficient mice, while

obese, are resistant to hypertension, thrombosis and

impaired fibrinolysis; leptin administration in these mice

promotes neointimal growth and stenosis [9], whereas

inhibition of leptin using neutralizing antibodies protects

wild-type mice from thrombosis [10], together suggesting

a prothrombotic function for leptin. Conversely, leptin

deficiency is associated with cardiac hypertrophy, and

leptin supplementation reverses that phenotype, suggest-

ing an antihypertrophic function [11]. The use of leptin as

a therapeutic agent is limited by the severe leptin resis-

tance present in most obese individuals and, to date,

leptin therapy has been used successfully only in patients

with genetic leptin deficiency or lipodystrophy [12].

Adiponectin
Adiponectin (ACRP30/AdipoQ) is a 30 kDa protein speci-

fically expressed in adipocytes, plasma levels of which

negatively correlate with adiposity, insulin resistance, cor-

onary artery disease and dyslipidemia in both mice and

humans [1–3,13]. In mice, deletion of adiponectin results in

insulin resistance, dyslipidemia and increased neointimal

proliferation, whereas overexpression or pharmacological

administration of adiponectin improves insulin sensitivity

and protects against atherosclerosis [1–3,13–16]. Recently,

a protective role for adiponectin in cardiomyopathy was

demonstrated: adiponectin deletion enhances cardiac

hypertrophy, whereas overexpression attenuates it [17��];
furthermore, in vitro, adiponectin modulates hypertrophic

signals in cardiomyocytes. Adiponectin also stimulates

angiogenesis and is important for recovery from ischaemic
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injury [18�]. Under different conditions, however, adipo-

nectin can also be antiangiogenic [19]. Adiponectin is

thought to directly affect a wide variety of target cells,

including hepatocytes, myocytes, endothelial cells, macro-

phages and smooth muscle cells; AMPK has been identi-

fied as a key intracellular mediator of adiponectin function

[2,13]. Recently, the notion of a primarily peripheral action

of adiponectin has been challenged by the finding that

central injection of adiponectin modulates energy expen-

diture, resulting in decreased body weight [20��]. It will be

important to determine whether central effects of adipo-

nectin also contribute to its effects on glucose metabolism

and cardiovascular function.

The study of adiponectin is complicated by the hetero-

geneity of protein preparations. Adiponectin assembles

into trimers, hexamers and larger high molecular weight

(HMW) structures, and is modified by hydroxylation and

glycosylation [1–3,21,22�]; the isoform composition of

different preparations varies depending upon the source

of protein. Full-length trimeric adiponectin can also be

processed proteolytically to a 26 kDa form in mammalian

cells [22�], and a 16 kDa tryptic digestion fragment

(globular adiponectin) has been used in numerous studies

[1,2]. An area of significant interest is the physiological

effects of different adiponectin isoforms. The ratio of

HMW to total adiponectin is significantly decreased in

patients with coronary artery disease [23] and increases

upon treatment with thiazoledinediones [24�]. The

HMW form mediates adiponectin effects in liver and

endothelial cells [18,22�,23,25]; by contrast, trimers

appear to be the primary mediators in heart, skeletal

muscle and hypothalamus [17��,20��,26]. Interestingly,

a preparation containing the 26 kDa processed fragment

is more potent in the liver than is HMW adiponectin,

possibly indicating an important role for proteolytic pro-

cessing [22�]. Two adiponectin receptors, AdipoR1 and

AdipoR2, have been identified [27�]. These receptors

show a different affinity for globular and full-length

adiponectin, and differ in their tissue distribution, which

might explain the varying effects of different isoforms.

However, the affinity of these receptors for individual

mammalian-derived adiponectin isoforms remains to be

determined. T-cadherin was recently suggested as an

additional adiponectin receptor, on the basis of its ability

to bind HMW, but not trimeric, adiponectin [28]; how-

ever, its signaling abilities have not yet been examined. In

addition to utilizing different receptors, different isoforms

of adiponectin can also activate distinct signal transduc-

tion pathways: in muscle, HMW adiponectin activates the

nuclear factor-kB pathway, whereas trimeric forms acti-

vate AMPK [26,29].

Resistin
Resistin is a �10 kDa protein that is secreted exclusively

by adipocytes in the mouse, but is expressed primarily in

macrophages and monocytes in humans [30]. Resistin is
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part of a family of resistin-like-molecules (RELMs), which

contains four members in the mouse, but only two in

humans. Importantly, resistin can heterodimerize with

some RELM family members [31], and at least one resistin

homologue, RELMb, has been shown to have effects on

insulin resistance indistinguishable from those of resistin

[32�]. Although recent studies clearly establish a role for

murine resistin in glucose metabolism, and possibly dysli-

pidemia [32�,33��,34–37], translation of these results into

humans has been questioned given the differences

between mouse and human tissue distribution. Human

resistin serum levels are associated with adiposity and

insulin resistance in many, but not all, studies [30]. Inter-

estingly, human resistin is induced by inflammatory med-

iators such as lipopolysaccharide and tumour necrosis

factor (TNF)a [38�], raising the possibility that upregula-

tion of human resistin in obesity is secondary to upregula-

tion of inflammatory mediators. Human resistin promotes

smooth muscle cell proliferation [39] and endothelial cell

activation [40], supporting a possible proatherogenic role

for resistin. The crystal structure of resistin has recently

been determined [41��]; similar to adiponectin, resistin

forms multimeric complexes, and is present in mouse

serum as two distinct isoforms, most likely trimers and

hexamers. A mutant that is unable to form hexamers is

more potent in inducing insulin resistance than is the wild-

type protein, suggesting processing-mediated activation

[41��]. Although no receptors for resistin have been iden-

tified, AMPK has been suggested as an important intra-

cellular mediator [33��]. An emerging theme is a functional

antagonism between resistin and adiponectin; it will be

interesting to see whether different isoforms of resistin

have distinct receptors and signaling activities as has been

suggested for adiponectin.

Angiopoietin-like protein 4
Angiopoietin-like protein 4 (ANGPTL4; FIAF/PGAR), a

50 kDa secreted protein highly expressed in adipose

tissue, is an angiopoietin family member most closely

related to ANGPTL3 [42,43]. Expression of ANGPTL4

is directly regulated by members of the PPAR family of

transcription factors [42,43,44�]; however, regulation by

adipose mass or nutritional status is not consistently found

[43,44�]. Similar to ANGPTL3, overexpression of

ANPTL4 dramatically increases plasma triglyceride

levels, possibly owing to direct inhibition of lipoprotein

lipase [45,46]. It remains unclear, however, whether the

levels achieved by overexpression are physiologically

relevant. ANGPTL4 also has antiangiogenic activities

[47]. Structural studies and comparison to ANGPTL3

suggests that the N-terminal coiled-coil domain is respon-

sible for the triglyceride increase, whereas the C-terminal

fibrinogen-like domain mediates the antiangiogenic

effect [48�]. Interestingly, ANGPTL4 is processed in a

tissue- and species-specific manner [44�], and this proces-

sing might enhance in vivo activity [48�]. The physiolo-

gical role of ANGPTL4 remains to be elucidated.
Current Opinion in Pharmacology 2005, 5:122–128
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Visfatin
Visfatin (pre-B cell colony-enhancing factor), a 52 kDa

secreted protein, was recently added to the list of adipo-

cyte-derived factors [49��]. Although visfatin is widely

expressed, adipose visfatin is specific to the visceral depot,

and visfatin serum levels are positively correlated with

visceral adiposity. Visfatin has effects similar to insulin,

and can bind to and activate the insulin receptor at a site

distinct from insulin. Because the circulating levels of

visfatin are significantly lower than its affinity for the

insulin receptor, visfatin might act in an auto- or paracrine

manner, rather than in an endocrine fashion. Visfatin

expression is regulated in inflammation and sepsis, and

visfatin can inhibit apoptosis in neutrophils, implying

functions other than its insulin-mimetic effects [50].

Free fatty acids
Free fatty acids (FFAs) released from adipose tissue are a

major source of plasma FFAs, and adipose tissue FFA

release as well as plasma FFA levels are elevated in obese

individuals [51,52]. Elevated plasma FFA levels can cause

insulin resistance in muscle and liver; this is mediated

by intracellular fatty acid metabolites such as acyl-CoA

and possibly ceramide [53]. In addition, FFA infusion

decreases mitochondrial gene expression in muscle

[54�], suggesting that FFAs may modulate the metabolic

capacity of target tissues. FFAs have also been implicated

in the pathogenesis of cardiomyopathy, and genetic mod-

els that increase fatty acid delivery to heart recapitulate

many of the features of diabetic cardiomyopathy [55�].
Circulating FFAs are almost exclusively derived from

subcutaneous adipose tissue [52]; thus FFA lipolysis is

unlikely to account for the association between visceral

adiposity and metabolic syndrome disorders.

Inflammatory mediators, acute phase
reactants and complement-derived factors
Obesity is well recognized as a state of low-grade inflamma-

tion. Adipose tissue expresses a large variety of cytokines

andchemokines (e.g.TNFa, interleukin[IL]-1b, IL-6, IL-

8, IL-10, IL-1 receptor antagonist, monocyte chemotactic

protein-1, macrophage migration inhibitory factor, macro-

phage inflammatory protein 1a, and macrophage inflam-

matory protein-related protein-2), as well as acute phase

reactants (e.g. serumamyloidA3,haptoglobin),andmanyof

these are known to be upregulated in both adipose tissue

and the systemic circulation in obesity [1,2]. Recent studies

demonstrate that obesity is associated with macrophage

infiltration into adipose tissue in both mice and humans

[56�,57�,58]. Many, but not all, of the factors cited above are

produced primarily by adipose tissue macrophages rather

than adipocytes [56�,57�,58,59,60�].Macrophagesappear to

be recruited from the circulation and adipocyte-derived

factors might be involved in this process [57�,58].

An important unanswered question is the degree to which

any particular adipose-derived inflammatory mediator
Current Opinion in Pharmacology 2005, 5:122–128
enters the systemic circulation and mediates obesity-

associated metabolic and cardiovascular disorders. TNFa

is an important mediator of inflammation and can induce

several other inflammatory cytokines [61]. However,

although circulating TNFa clearly is important for the

development of insulin resistance in rodents, several

human studies did not show any beneficial effects on

insulin sensitivity when circulating TNFawas neutralized

[61], leading to the suggestion that TNFa acts in a para-

crine fashion. A recent report proposed that prolonged

treatment might be required to detect an effect of anti-

TNFa treatment on insulin sensitivity [62]. IL-6 is also

secreted by adipose tissue at high levels [60�] and is present

in the systemic circulation at higher levels than TNFa.

IL-6 has been implicated in the regulation of insulin

sensitivity and possibly body weight in rodents, and both

peripheral and central actions of IL-6 might be involved

[63,64]. Although neutralizing anti-IL-6 antibodies have

been developed, their effect on obesity-associated disor-

ders has not yet been evaluated. The effects of inflamma-

tory mediators on cells of interest to cardiovascular disease

have recently been reviewed [65]. Adipose tissue-derived

complement components, most notably Factor D/Adipsin,

and the complement-derived factor acylation-stimulating

protein have been reviewed [1–3].

Prothrombotic factors
Plasminogen-activator inhibitor 1 (PAI-1) is a serine

protease inhibitor that prevents plasmin generation and

plasmin-mediated events such as fibrinolysis and extra-

cellular matrix degradation; elevated plasma PAI-1 levels

are a known risk factor for thrombosis [66]. PAI-1 might

also regulate fibrin deposition and vascular smooth mus-

cle cell function through direct interactions with vitro-

nectin [66]. Although PAI-1 is synthesized by many cell

types, adipose tissue is thought to be a major source of

PAI-1 in the obese, and circulating PAI-1 levels correlate

with visceral adiposity [1]. Within obese adipose tissue,

both adipocyte and non-adipocyte fractions produce PAI-

1 [60�], and TNFa is a key mediator of obesity-linked

elevation of PAI-1 [1]. Recent attention has focused on

the possible role of PAI-1 in adipose tissue development.

In response to a high-fat diet, PAI-1-deficient mice show

less weight gain, smaller adipocyte size and lower tissue

triglyceride levels compared with wild-type mice,

whereas energy expenditure and insulin sensitivity are

increased [67�,68]. Small molecule inhibitors of PAI-1

have been developed and shown to be efficacious in

animal models of thrombosis [69]. It will be interesting

to see whether these inhibitors also ameliorate obesity.

Glucocorticoids and the renin-angiotensin
system
Localized glucocorticoid production by adipose tissue,

mediated by the enzyme 11-b-hydroxysteroid dehydro-

genase 1 (11b-HSD1), is an important regulator of meta-

bolic syndrome components in rodents, and possibly
www.sciencedirect.com
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humans [1,70�]. Importantly, systemic glucocorticoid

levels are not elevated in rodent or human obesity,

suggesting that glucocorticoids act within adipose tissue

or through the portal circulation on the liver. Mice over-

expressing 11b-HSD1 in adipose tissue recapitulate all

components of the metabolic syndrome [1], whereas mice

with liver-specific overexpression of 11b-HSD1 display

hypertension, dyslipidemia and mild insulin resistance,

but not adiposity [71�], demonstrating adipose-specific

effects of glucocorticoids. Hypertension in mice over-

expressing 11b-HSD1 in either liver or adipose tissue

involves activation of the local renin-angiotensin system

(RAS) [72�]. RAS is a hormonal cascade that governs

vascular tone, fluid-electrolyte balance and blood pres-

sure [73]. Adipose tissue expresses all of the components

of the RAS, and expression of several of these compo-

nents is positively correlated with adiposity [73]. The

elevated expression of RAS components in adipose tissue

might therefore be a reflection of increased local gluco-

corticoid action, particularly in visceral adipose tissue.

The role of the adipose tissue RAS on body weight

regulation has recently been reviewed [73].

Conclusions
Over the past few years, both the number of factors

secreted by adipose tissue as well as the functions asso-

ciated with known factors have expanded significantly. A

growing challenge is to determine which of the multitude

of described effects for each factor are most important

physiologically, and which factor(s) lend themselves to

pharmacological modulation. Differences between

human and mouse physiology (e.g. resistin) have been

described. Increased use of tissue-specific overexpression

and knockdown models in mice should help elucidate

direct versus indirect effects of individual factors on

particular tissues; transcriptional profiling and proteomics

technologies, particularly when applied to different adi-

pose depots, might help identify mechanisms of action. It

is likely that additional adipose-derived factors will be

identified; indeed, a mineralocorticoid-releasing factor

[74] as well as a vascular-relaxing factor derived from

periadventitial adipose tissue have been described [75]

and await molecular identification.
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